Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients.
نویسندگان
چکیده
Purpose To evaluate macular and peripapillary vessel perfusion density (VD) in glaucoma suspects (GS) and glaucoma patients; to correlate ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL) thicknesses with macular and peripapillary VD; and to evaluate the diagnostic accuracy of the structural and vascular parameters. Methods A consecutive series of GS, glaucoma patients, and healthy subjects was prospectively recruited from July 1, 2016, to January 31, 2017. All subjects underwent standard automated perimetry, spectral-domain optical coherence tomography (OCT), and 6 × 6-mm optical coherence tomography angiography (OCT-A) centered on the fovea and optic nerve. Results Forty controls, 40 GS, and 40 glaucoma patients were enrolled. Peripapillary RNFL, GCIPL, and macular RNFL thicknesses significantly decreased in the glaucoma group compared to controls and GS (P < 0.01). Peripapillary VD in average and in the superior and inferior quadrants decreased in the glaucoma group (P ≤ 0.001); conversely, macular VD was not statistically different across groups (P > 0.05). At the peripapillary area, a correlation between RNFL thickness and VD was found; conversely, no statistically significant correlation was found between GCIPL thicknesses and macular VD (all P > 0.05) in all groups. Peripapillary RNFL and GCIPL showed higher diagnostic capacity compared to peripapillary and macular VDs. Conclusions Structural damage is evident both in the peripapillary and in macular areas. Vascular damage seems to be less prominent, as it was seen only for the glaucoma group and at the radial peripapillary plexus. Diagnostic abilities are excellent for structural variables, less so but still good for peripapillary VD, and poor for macular VD.
منابع مشابه
Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes.
Purpose To quantitatively evaluate the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes using optical coherence tomography angiography (OCT-A). Methods We enrolled 26 eyes of medically managed primary open-angle glaucoma patients and 27 eyes of healthy subjects were enrolled in this prospective study. Measurements of OCT-A vessel density wer...
متن کاملQuantitative optical coherence tomography angiography of the peripapillary circulation in glaucoma
© Annals of Eye Science. All rights reserved. Ann Eye Sci 2017;2:8 aes.amegroups.com The cause of glaucoma, a disease defined by degeneration of retinal ganglion cells associated with cupping of the optic nerve head (ONH) and progressive vision loss, continues to be debated despite numerous advances in ophthalmic imaging and diagnostics. Although elevated intraocular pressure is often implicate...
متن کاملA comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma
PURPOSE To compare the diagnostic abilities of vessel density measurements of the optic nerve head (ONH), peripapillary and macular regions on optical coherence tomography (OCT) angiography in eyes with primary open angle glaucoma (POAG) with that of the ONH rim area, peripapillary retinal nerve fiber layer (RNFL) thickness and the macular ganglion cell complex (GCC) thickness measurements. M...
متن کاملClinical Applications of Optical Coherence Tomography in Ophthalmology
Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases. Furtherm...
متن کاملOptical Coherence Tomography Angiography to Better understand Glaucoma
The term optical coherence tomography angiography (OCTA) comprises different OCT-based technologies which all allow noninvasive assessment of retinal perfusion, based on moving red blood cells. The main areas where OCTA is currently used are investigation of perfusion and vascular structure of the macular retina (e.g., in macular degenerations and diabetic macular diseases) and the disk and per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 58 13 شماره
صفحات -
تاریخ انتشار 2017